你好!歡迎訪問清鎮(zhèn)市安祥機(jī)械工程有限公司官方網(wǎng)站!
服務(wù)咨詢熱線
13985038929
18785157648
公司:清鎮(zhèn)市安祥機(jī)械工程有限公司
聯(lián)系人:黃經(jīng)理
手機(jī):13985038929
18785157648
網(wǎng)址:ssckp.cn
地址:貴州省清鎮(zhèn)市中環(huán)國(guó)際A4五樓4號(hào)
打井找水知識(shí):貴州打井工程物探方法在找水方面的應(yīng)用
我國(guó)是個(gè)缺水的國(guó)家, 地下水是我國(guó)重要的生產(chǎn)、生活水源之一。地下各種含水構(gòu)造對(duì)采礦、環(huán)保、農(nóng)業(yè)、地下工程等部門也有重大意義。因此地下水的高效率、高精度勘查就成為水資源研究中首先要解決的問題。
當(dāng)?shù)刭|(zhì)單元含有地下水后, 其電導(dǎo)率與含水飽和度、礦化度、地層孔隙度、滲透率等諸多因素相關(guān)。通常, 貴州打井工程含水層相對(duì)隔水層或低飽和地層呈現(xiàn)明顯的高導(dǎo)電性, 因此電導(dǎo)率異常是地下水地球物理電磁法勘探的主要依據(jù)。除電導(dǎo)率特征外, 含水層通常還有較高的介電常數(shù), 所以高飽和地層可以對(duì)地質(zhì)雷達(dá)等高頻設(shè)備所發(fā)射的電磁波產(chǎn)生明顯影響。另外, 在某些特殊情況下, 磁異常、彈性波阻抗異常、放射異常等均被間接地用于水文地質(zhì)研究。
本文對(duì)其中幾種主要方法, 如高密電法、激發(fā)極化法、瞬變電磁法、可控源音頻大地電磁法和地質(zhì)雷達(dá)等作簡(jiǎn)要介紹, 并就這些方法在水文和工程地質(zhì)中的應(yīng)用進(jìn)行簡(jiǎn)單闡述供大家參考。
1 高密度電法
高密度電法實(shí)際上是集中了電剖面法和電測(cè)深法, 其原理與普通電阻率法相同, 所不同的是在觀測(cè)中設(shè)置高密度觀測(cè)點(diǎn), 是一種陣列勘探方法。關(guān)于陣列電法勘探的思想源于20世紀(jì)70年代末期,英國(guó)人設(shè)計(jì)電測(cè)深偏置系統(tǒng)就是高密度電法的最初模式, 20世紀(jì)80年代中期日本借助電極轉(zhuǎn)換板實(shí)現(xiàn)了野外高密度電法數(shù)據(jù)采集。我國(guó)是從20世紀(jì)末期開始研究高密度電法及其應(yīng)用技術(shù), 從理論方法和實(shí)際應(yīng)用的角度進(jìn)行了探討并完善。
高密度電法野外測(cè)量時(shí)將全部電極(幾十至上百根) 置于剖面上, 利用程控電極轉(zhuǎn)換開關(guān)和微機(jī)工程電測(cè)儀便可實(shí)現(xiàn)剖面中不同電極距、不同電極排列方式的數(shù)據(jù)快速自動(dòng)采集。
與常規(guī)電阻率法相比, 高密度電法具以下優(yōu)點(diǎn):
①電極布置一次性完成, 不僅減少了因電極設(shè)置引起的故障和干擾, 并且提高了效率;
②能夠選用多種電極排列方式進(jìn)行測(cè)量, 可以獲得豐富的有關(guān)地電斷面信息;
③野外數(shù)據(jù)采集實(shí)現(xiàn)了自動(dòng)化和半自動(dòng)化, 提高了數(shù)據(jù)采集速度, 避免了手工誤操作。
此外, 隨著地球物理反演方法的發(fā)展, 高密度電法資料的電阻率成像技術(shù)也從一維和二維發(fā)展到三維, 極大的提高了地電資料的解釋精度。
2 激發(fā)極化法
在電法勘探中, 當(dāng)電極排列向大地供入或切斷電流的瞬間, 在測(cè)量電極之間總能觀測(cè) 到隨時(shí)間緩慢變化的附加電場(chǎng), 稱為激發(fā)極化效應(yīng)。激發(fā)極化法就是以巖、礦石激發(fā)極化效應(yīng)的差異為基礎(chǔ)來(lái)解決地質(zhì)問題的一類勘探方法。激發(fā)極化法是20世紀(jì)50年代末在我國(guó)開始研究和推廣的, 早期是以直流(時(shí)間域) 激發(fā)極化法為主, 20世紀(jì)70年代初開始研究交流(頻率域) 激發(fā)極化法, 主要是變頻法。20世紀(jì)80年代初又開始對(duì)頻譜激發(fā)極化法進(jìn)行研究, 也就是研究復(fù)視電阻率隨頻率的變化, 即復(fù)視電阻率的頻譜。由于該方法測(cè)量的是二次場(chǎng), 貴州打井工程具有不受地形起伏和圍巖電性不均勻的影響、可測(cè)量的參數(shù)多等優(yōu)點(diǎn)。
在實(shí)際地質(zhì)應(yīng)用方面, 初期的激發(fā)極化法主要用于勘查硫化金屬礦床, 后來(lái)發(fā)展到諸多領(lǐng)域, 如氧化礦、非金屬礦床工程地質(zhì)問題等。近年來(lái), 激發(fā)極化法找水效果十分顯著, 被譽(yù)為找水新法。早在20 世紀(jì)60 年代, 國(guó)外學(xué)者Victor Vacquier(1957) 等提出了用激電二次場(chǎng)衰減速度找水的思想。在該思想啟迪下, 我國(guó)也開展了有關(guān)研究, 并將激電場(chǎng)的衰減速度具體化為半衰時(shí)、衰減度、激化比等特征參數(shù)。這些參數(shù)不僅能較準(zhǔn)確地找到各種類型的地下水資源, 而且可以同一水文地質(zhì)單元內(nèi)預(yù)測(cè)水量大小, 把激電參數(shù)與地層的含水性聯(lián)系起來(lái)。
值得一提的是, 利用激發(fā)極化法找水或確定地層的含水性, 最好于與高密度電阻率法相結(jié)合, 這樣可以降低解釋的多解性, 提高找水的成功率。高密度電阻率法在確定高阻或低阻地質(zhì)體方面具有優(yōu)越性, 但低阻地質(zhì)體并不代表富含地下水, 可能是由于泥巖引起地層的電阻率下降。這時(shí), 可以通過使用激發(fā)極化法來(lái)區(qū)分含水地層和泥巖, 因?yàn)榧る姸螆?chǎng)與巖石的孔隙有關(guān), 在純泥巖中極化率比較小, 在含水砂礫巖中極化率比較大, 此外, 二次場(chǎng)的衰減速度也與孔隙的大小, 形狀和寬窄有關(guān), 這就是激發(fā)極化電法找水機(jī)理所在。
3 瞬變電磁法( TEM )
瞬變電磁法是時(shí)間域的人工源主動(dòng)探測(cè)法。其基本原理是通過地面水平線框向地下發(fā)射脈沖磁矩, 該一次場(chǎng)關(guān)斷后, 測(cè)量一段時(shí)間內(nèi)由地下介質(zhì)感應(yīng)生成二次場(chǎng)。地質(zhì)體所感應(yīng)出電流越大, 其異常也越明顯, 因此, 瞬變電磁法對(duì)含水的高導(dǎo)地層靈敏, 并且有較強(qiáng)的抗干擾能力。該方法的探測(cè)深度與所使用的磁矩(即發(fā)射框面積乘以發(fā)射電流大小) 大小成正比, 一般有效分辨區(qū)間為400 m以內(nèi)。突出優(yōu)點(diǎn)是觀測(cè)純二次場(chǎng), 且不受靜態(tài)、近場(chǎng)效應(yīng)、地形、接地條件影響。
瞬變電磁法不足之處是評(píng)估地層含水量時(shí)一般只能通過電阻率對(duì)比, 定量研究需要做抽水試驗(yàn)。瞬變電磁法在變質(zhì)巖地區(qū), 對(duì)異常推斷較困難。隨著探測(cè)深度加大, 層間滲透水和金屬礦的影響越來(lái)越明顯。瞬變電磁法資料中容易因激發(fā)極化效應(yīng)出
現(xiàn)測(cè)深曲線的非正常變化。另外還存在數(shù)據(jù)量大,資料解釋較為復(fù)雜的特點(diǎn)。不便于野外工作的快速分析和現(xiàn)場(chǎng)決策。
4 可控源音頻大地電磁法( CSAM T)
可控源音頻大地電磁法, 是在大地電磁法(MT) 和音頻大地電磁法(AMT) 基礎(chǔ)上發(fā)展起來(lái)的一種可控源頻率測(cè)深方法??煽卦匆纛l大地電磁法是1975年由Myron Coldstein提出, 它基于電磁波傳播理論和麥克斯韋方程組建立了視電阻率和電場(chǎng)與磁場(chǎng)比值之間的關(guān)系, 并且根據(jù)電磁波的趨膚效應(yīng)理論得出電磁波的傳播深度(或探測(cè)深度)與頻率之間的關(guān)系, 這樣可以通過改變發(fā)射頻率來(lái)改變探測(cè)深度, 達(dá)到頻率測(cè)深的目的。
目前, 可控音頻大地電磁法采用可控制人工場(chǎng)源, 測(cè)量由電偶極源傳送到地下的電磁場(chǎng)分量, 兩個(gè)電極電源的距離為1~2 km, 測(cè)量是在距離場(chǎng)源5~10 km以外的范圍進(jìn)行, 此時(shí)場(chǎng)源可以近似為一個(gè)平面波。
由于該方法的探測(cè)深度較大(通??蛇_(dá)2 km) , 并且兼有剖面和測(cè)深雙重性質(zhì), 因此具有諸多優(yōu)點(diǎn):
①使用可控制的人工場(chǎng)源, 測(cè)量參數(shù)為電場(chǎng)與磁場(chǎng)之比———卡尼亞電阻率, 增強(qiáng)了抗干擾能力, 并減少地形影響。
②利用改變頻率而非改變幾何尺寸進(jìn)行不同深度的電測(cè)深, 一次發(fā)射可同時(shí)完成7個(gè)點(diǎn)電磁測(cè)深, 提高了工作效率。
③探測(cè)深度范圍大, 一般可達(dá)1~2 km。
④橫向分辨率高, 很容易發(fā)現(xiàn)斷層。
⑤高阻屏蔽作用小, 可以穿透高阻層。
與大地電磁法和音頻大地電磁法相同, 可控音頻大地電磁法也受靜態(tài)效應(yīng)和近場(chǎng)效應(yīng)的影響, 可以通過多種靜態(tài)校正方法來(lái)消除“靜態(tài)效應(yīng)”的影響??煽匾纛l大地電磁法一出現(xiàn)就展示了比較好的應(yīng)用前景, 尤其是作為普通電阻率和激發(fā)極化法的補(bǔ)充, 可以解決深層的地質(zhì)問題, 如在尋找隱伏金屬礦, 油氣構(gòu)造勘查, 推覆體或火山巖下找煤,地?zé)峥辈楹退墓こ痰刭|(zhì)勘查等方面, 均取得良好的地質(zhì)效果。
5 地質(zhì)雷達(dá)法( GPR)
地質(zhì)雷達(dá)法與探空雷達(dá)技術(shù)相似, 貴州打井工程利用寬帶高頻時(shí)域電磁脈沖波的反射探測(cè)目標(biāo)體, 只是頻率相對(duì)較低, 用于解決地質(zhì)問題, 又稱“探地雷達(dá)”,將雷達(dá)技術(shù)用于地質(zhì)探測(cè), 早在1910年就已經(jīng)提出, 在隨后的60年中該方法多限于對(duì)波吸收很弱的鹽、冰等介質(zhì)中。直到20世紀(jì)70年代以后, 地質(zhì)雷達(dá)才得到迅速推廣應(yīng)用。
地質(zhì)雷達(dá)是由地面的反發(fā)射天線將電磁波送入地下, 經(jīng)地下目標(biāo)體反射被地面接收天線所接收,通過分析所接收到電磁波的時(shí)頻、振幅特性, 可以評(píng)價(jià)地質(zhì)體的展布形態(tài)和性質(zhì)。由于雷達(dá)穿透深度與發(fā)射的電磁波頻率有關(guān), 使其穿透深度有限, 但分辨率很高, 可達(dá)0105 m以下。早期地質(zhì)雷達(dá)只能探測(cè)幾米內(nèi)的目標(biāo), 應(yīng)用范圍比較窄。此外, 地質(zhì)雷達(dá)與地震反射原理相似, 一些地震資料處理解釋方法可以借用。目前, 地質(zhì)雷達(dá)探測(cè)深度最大可達(dá)100 m, 使之成為水文和工程地質(zhì)勘查中有效的地球物理方法。
6 結(jié)論
通過對(duì)幾種主要電法勘探方法的發(fā)展、原理及實(shí)際應(yīng)用進(jìn)行綜述, 可以看出, 電法勘探方法在水文和工程地質(zhì)勘探領(lǐng)域有著廣泛的應(yīng)用, 歸結(jié)起來(lái)有以下幾方面:
(1) 高密度電法由于其高效率, 深探測(cè)和精確的地電剖面成像, 成為水文和工程地質(zhì)勘查中最有效的方法??紤]到該方法分辨率不高, 在具體的應(yīng)用中可以結(jié)合其他電法勘探、電測(cè)井等方法, 達(dá)到精細(xì)地質(zhì)解釋的目的。
(2) 在水文勘探中, 激發(fā)極化法和可控源音頻大地電磁法是首選的電法勘探方法, 如果將激發(fā)極化法和高密度電法結(jié)合起來(lái)尋找地下水資源, 效果會(huì)更好。
(3) 瞬變電磁法在水文地質(zhì)和工程地質(zhì)勘探中都有著廣泛的應(yīng)用, 尤其是大功率瞬變電磁儀不僅可以在深部地質(zhì)勘探中發(fā)揮作用, 還具有較高分辨能力。如果將該方法與高密度電法結(jié)合使用, 有望解決深部精細(xì)地質(zhì)勘探問題。
(4) 地質(zhì)雷達(dá)主要用于各類工程地質(zhì)勘探,貴州打井工程是工程地質(zhì)勘探首選的電法勘探方法。同時(shí), 該方法可以借用地震勘探中已有的資料處理和解釋技術(shù), 使其迅速發(fā)展, 可以在更多領(lǐng)域發(fā)揮作用。